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The equations which govern the flow at high Reynolds number in the vicinity 
of the trailing edge of a finite flat plate a t  incidence to a uniform supersonic stream 
are solved numerically using a finite-difference procedure. The critical order of 
magnitude of the angle of incidence a* for the occurrence of separation on one 
side of the plate is a* = O(R-2) (Brown & Stewartson 1970), where R is a repre- 
sentative Reynolds number for the flow, and results are computed for three such 
values of u* which characterize the possible behaviour of the flow above the plate. 
The final set of computations leads to a numerical value for the trailing-edge 
stall angle a,*, the angle of incidence which just causes the flow to separate at  the 
trailing edge of the plate. Analytic solutions are available in the form of asymp- 
totic expansions near the trailing edge in terms of the scaled variable of order 
R-8. A multi-layer-type of expansion which occurs in the case a* = a,* is pre- 
sented in detail for comparison with the computed solution. 

1. Introduction 
The flow near the trailing edge of an aerofoil at incidence to a uniform stream, 

in the limit as the Reynolds number R tends to infinity, has been studied by 
Brown & Stewartson (1970) for both compressible and incompressible flows. 
In  the former case they showed that (provided that the necessary assumptions 
are made regarding the thickness of the aerofoil to exclude the effects of leading- 
edge stall and of a non-zero trailing-edge angle) for a supersonic mainstream 
the critical order of magnitude of the angle of incidence a* for the occurrence of 
separation at  the trailing edge is a* = O(R-I);  the flow above and below the aero- 
foil near the trailing edge then has a complicated three-layer or triple-deck 
structure in which the fundamental problem reduces to that of solving the in- 
compressible boundary-layer equations subject to unconventional boundary 
conditions. The main aim of this paper is to provide a numerical solution to this 
problem for three values of the scaled angle of incidence u which characterize the 
possible flow configurations above the aerofoil. 

For the first, a is taken to be small and so the flow is similar to that which occurs 
at  zero incidence, numerical results for which have been presented by the present 
author (1974). As a is increased, a value is reached a t  which the Blasius flow 
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above the aerofoil is sustained right to the trailing edge; this angle a,, is the second 
for which the flow pattern is computed. Further increase in a eventually results 
in the occurrence of separation on the upper surface of the foil. The final set of 
computations leads to a numerical value for the trailing-edge stall angle as, the 
angle of incidence which just causes the flow to separate a t  the trailing edge. 

Because of their parabolic nature, the equations are solved using a numerical 
marching procedure, which takes special account of the singularity which occurs 
at  the trailing edge. The triple-deck structure provides the second-order terms 
in the asymptotic expansions of the lift and drag on the aerofoil as R -+ 00. The 
computed values of these terms, which are O(R-B) and O(R-%) respectively, are 
tabulated for each angle of incidence. The computed results are also supplemented 
by analytic solutions in the form of asymptotic expansions in terms of the scaled 
variable x of order R-*; this is possible both as x + 0 + (just downstream of the 
trailing edge) and as x -+ CO. Major emphasis is placed on a multi-layer-type 
expansion which occurs in the case a = a, as x -+ 0 + . 

2. Formulation of the problem 
Given the assumptions referred to in 3 1 regarding the thickness of the aerofoil, 

we may, for simplicity, consider a flat plate of zero thickness in the x*, y* plane. 
The plate is taken to occupy the section - 1 6 x* < 0 of the x* axis with the origin 
of co-ordinates a t  the trailing edge. The velocity components in the x* and y* 
direction are u* and v* respectively, so that if U, is the supersonic mainstream 
velocity we have 

u* 3 urn, v* +- u,a* (x* --f -m), (2.1) 

and according to inviscid theory the slip velocity and pressure on the plate are 
given by 

u* = U, + U, a*: sgn y"/(MZ, - l)*, 

p* = p a  - U:p,a* sgn y*/(Jfk - I)*, 
(2.2) 

(2.3) 

where p* is the pressure and pm, pm and N, ( > I) are the pressure, density and 
Mach number respectively at  an infinite distance upstream. Thus Blasius-type 
boundarylayers are formed above and below the plate with external velocities and 
pressures given by (2.2) and (2.3). These apply except in the regions of disconti- 
nuity around the leading and trailing edges. 

The triple-deck structure which occurs at  the trailing edge is described by 
Brown & Stewartson (1970). Let R be the Reynolds number of the flow, which is 
assumed large and is defined by 

R = U,l/V,, (2.4) 

where vco is the kinematic viscosity at an infinite distance upstream. For con- 
venience, we also define 

c = R d .  

Then, in accordance with Brown & Stewartson we define the non-dimensional 
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(2.18) is the no-slip condition on the plate. Condition (2.19) represents the fact 
that the two lower decks merge beyond the trailing edge, so that the pressures 
py ,  and pB must equalize and the flow must be continuous across the wake. As in 
the symmetric case, the final boundary condition required to obtain a unique 
solution of the system (2.13)-(2.19) is 

p + O  a8 x + o .  (2.20) 

3. Computational procedure 
The numerical problem presented by (2.13)-(2.20) is more complicated than 

that for the symmetric case (Daniels 1974, to be referred to as I) since the flow 
regions above and below the plate in x 6 0 must be considered separately, whilst 
in x > 0 the flow must be treated as a whole. The condition (2.20) plays a passive 
role, and we have to compute a solution which satisfies (2.13)-(2.19), observe its 
downstream behaviour and recompute until (2.20) is satisfied. In  this way the 
parabolic nature of the problem is exploited and the solutions above and below 
the plate are computed using a step-by-step procedure which marches forward 
in the x direction. 

From the computational viewpoint it is found convenient to eliminate a 
from the probIem posed in x < 0,  y > 0 by use of the substitution 

FfJ = p ,  fa. (3.1) 

In  terms of the variables u, v and PT, the system of equations and boundary con- 
ditions (2.13)-( 2.16) and (2.18) is then exactly that which occurs upstream of the 
trailing edge for a symmetric plate (I), and in x < 0 is the problem originally 
posed by Stewartson & Williams (1969) to describe the phenomenon of self- 
induced separation from an infinite plane wall. As x + - 00 we have 

- pT N A o e k x  = p O e k ( x - x d ,  (3.2) 

where k = 0-8272, A ,  = p0fTk3-T is arbitrary and pT (x = x17) = p,. Three possible 
forms of solution exist in x 6 0, corresponding to pa positive, negative or zero. 
Ifp, = 0 we obtain the trivial solution pT = 0, u = y, v = 0,  which represents the 
undisturbed Blasius flow. If po > 0, pT continues to increase, the skin friction 
falls and there is a possibility of separation (Stewartson & Williams 1969), 
whilst if p, < 0,  FT decreases and the skin friction rises in a manner similar t o  
that in the supersonic flow upstream of a convex corner (Stewartson 1970). In  
both these latter cases the computed solution is initiated by prescribing the incre- 
ment pa, with the velocity profile the uniform shear of (2.15). The solution may 
then be considered to satisfy (2.15) as x --f - 00 and remains unique to within an 
origin shift in x, until the value of xT is known. 

Similar remarks apply to the solution in x < 0,  ?j < 0,  where we make the sub- 
stitution 

FB = pL3-4 

and the solution is unique once the value of xB, which fixes the origin of the free 
interaction solution, is known. In  this region the solution is always that €or which 
po < 0, since the effect of incidence enhances the favourable pressure gradient 

(3-3) 
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caused by the presence of the trailing edge. In  the lower deck above the plate, 
the effect of incidence opposes this favourable gradient and the value of p ,  is 
negative or positive depending upon whether a is less or greater than a,. When 
a = a, we have p o  = 0 and the Blasius flow above the plate continues right to the 
trailing edge. 

At the trailing edge the boundary conditions are discontinuous and the free 
interaction solutions referred to above are terminated with the requirement that 

PB(O) = PT(o)* (3.4) 

In  x > 0 the solution continues in terms of u, v and the unified pressure p ( x )  
and the lower decks are treated as a whole, subject to the boundary conditions 
(2.16) and (2.17) as y -+ +. cg. Finally we must satisfy condition (2.20), and this, 
together with (3.4), effectively determines the unknown values of xT and xB. 
In  practice, however, to compute the solution for one angle of incidence, it is 
convenient to solve the semi-inverse problem and fix xT rather than pre-assign 
a value to a. The solution for F T ,  u and v is then known in x < 0,  y > 0. A suitable 
value for X ,  is then chosen and the solution for jiB, u and v in x < 0, y < 0 is 
computed. The value of a may now be determined from (3.4) as 

a = I(- 2 r)T( 0 ) - F B ( O ) ) y  (3.5) 

and is substituted into the boundary conditions (2.16) and (2.17) to allow the 
solution to be continued into x > 0 from the known profile at  x = 0. The value 
of x, must be chosen so that the h a 1  boundary condition (2.20) is satisfied. 

In a similar manner to the symmetric case, it was found that if - xB was too 
small then the solution became compressive, i.e. the pressure rose in x > 0, 
eventually became positive and terminated in a plateau region, whilst if - X, 
was too large the solution was expansive, i.e. the pressure gradient, which was 
initially adverse in x > 0, finally became favourable and the computations ended 
in a singularity with p tending to -a. The fundamental solution in which 
p -> 0 as x -+ co clearly divided those results which were compressive from those 
which were expansive and thus it was possible to compute a solution down- 
stream and adjust xB accordingly. In this way x, (and a) were made to converge 
to values sufficiently accurate to ensure that a compressive and expansive solu- 
tion were identical, to within a required tolerance, as far downstream as was 
required and the fundamental solution satisfying (2.20) was thus determined. 

The numerical scheme followed a similar pattern to that employed for the 
symmetric plate (I), the major difference being that now the entire flow field 
(both y < 0 and y > 0) had to be considered; in x < 0 and x > 1 the equations were 
discretized onto a mesh of uniform steps in x and y, whilst in 0 < x < 1 a double- 
region matching procedure, an extension of that refined by Smith (1974), was 
used to enable the solution to pass through the singularity at  x = 0 in a stable 
manner (the changeover point x = 1 being chosen for convenience). This involved 
a discretization of the equations into an inner mesh of uniform steps in t ( = x+) 
and 7 (= ?//xi), enclosed above and below by outer meshes of uniform steps in 
6 and y; the numerical scheme thus closely followed the analytical structure of 
the solution just downstream of the trailing edge, which is outlined in $5.  
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4. Numerical results 
The computations were carried out for three values of a, corresponding to p,, 

less than, equal to and greater than zero for the free interaction solution above 
the plate. For the last of these, xT was chosen to cause the flow to separate pre- 
cisely at  the trailing edge of the plate and the computations thus yielded the 
trailing-edge stall angle as a, = 2.050, which, if we assume Chapman’s constant 
to be unity, corresponds to an angle of approximately 5’ at a Mach number of 2 
and Reynolds number of 105. For this angle, steps of 0.1 in x(x < 0, x > 1) and 
0.2 in y were used, with steps of 0.02 in ,$and 0-2in 7 in the double region 0 < x < 1,  
whilst for the other two solutions, in which the lower decks remained compara- 
tively thin, the y and 7 step lengths were halved. In  the double region, the outer 
boundaries of the inner region were taken at  r]hW = 2 5 ,  which allowed a simple 
continuation between the double- and single-region schemes at  x = 1. The outer 
boundaries for y were chosen to allow the value of Iau/ayI to tend smoothly to 
unity and typical values ranged from ykm N & 6, for the smallest value of a, 
to ym = 15, and y-, = - 1, for large values of x in the deflected wake downstream 
of the trailing edge in the case 01 = as. All iterations were required to converge to 
within a tolerance of Truncation errors due to the termination of the Taylor 
series expansions ofp, IL etc., are thought to be the most likely cause of inaccuracy 
and as in the symmetric case, the error margin is thought to be of order 5 x 10-4. 
Details of the final compressive and expansive solutions computed for each of 
the three values of a are shown in table 1, where 7(x, 0 f ) = &(z, 0 +_ )lay is 
the non-dimensional skin friction above and below the plate. 

The triple-deck structure at the trailing edge provides the leading-order 
corrections to  the lift and drag due to the boundary-layer flow over the remainder 
of the plate. In  terms of the non-dimensional variables these corrections are 

respectively, where 

On substitution of the numerical value of the constant h = 0.3321, the coeEcients 
of the total lift L and drag D for the inclined plate may be written as 

(4.5) 
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Solution 1 Solution 2 Solution 3 

Z T  - 15-7000 - - 18-5075 
Po = @dxT)  - 0~000001 0 0*000001 

Compressive 

X B  - 16.28975 - 16.62102 - 17.07881 
a 0.21 170 0.67902 2.05019 
P ( 0 )  - 0.64234 - 0.67902 - 1.02559 
T ( o - - ,  0-k) 1.55371 1.0 0~00000 
7(0-- ,  0-)  - 2.14233 - 2.88566 - 5,47250 

Expansive 

Z B  - 16.28978 - 16.62104 - 17.07882 
a 0.21 172 0-67904 2.05021 
P(0)  - 0.64236 - 0.67904 - 1.02561 
T ( o - - ,  o + )  1.55371 1.0 o*ooooo 
T ( O - ,  0 - )  - 2.14238 - 2.88572 - 5.47257 

TABLE 1 

U w g  
0.0 0.0 2.026 
0.2117 - 0.741 2.012 
0-6790 - 2.738 1.902 
2.0502 - 9.539 1-106 

TABLE 2 

The numerical values of I,/h$ and I,/h*, including the case a = O taken from I, 
are shown in table 2. 

Figures 1 and 2 show the general properties of the three solutions computed, 
and the curves corresponding t o  a: = O are included for comparison. The solu- 
tions are extrapolated for large x > 0 using the known asymptotic solution as 
x .+ co which is outlined in 0 6. 

5. Asymptotic structure as 2 -+ 0 + 
This region of the flow is important as both the pressure and velocity variations 

are large compared with those upstream and downstream of the trailing edge in 
the lower deck, and the expansions, outlined below, indicate the appropriate 
procedure for the numerical solution in 0 c x 6 1. At x = 0 - we assume that 
the velocity profile is differentiable and may be written as 

uIy+u,y2+u4y4+ ... when [y [  < 1 (y > 0), (5.2) 

b,y+b,y2+b4y4+ ... when ]yI 4 1 (y < O), (5.3) 

and where u, and b,, (n = 1,2,  . . .) are known constants for a given value of a:, 
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FIGURE 1. The pressure distribution for each angle of incidence: (1) a = 0.2117, 
(2) a = 0.6790, (3) 01 = 2.0502. The broken curve corresponds to a = 0 and is included 
for comparison. The behaviour near z = 0 is shown in the inset. 

FIGURE 2.  The skin friction above and below the plate (z < 0 )  and the value of au(z,O)/ay 
(z > 0 )  for each angle of incidence: (1) a = 0.2117, (2) CL = 0.6790, (3) a = 2.0502. The 
broken curve corresponds to a = 0. 
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In  particular, we have a, = 7(0- ,  0 +) and b, = 7(0 - , 0 - )  < 0, as given in 
table 1. As pointed out by Brown & Stewartson (1970), the case a, = 0 (i.e. a! = as) 
needs special attention, and we first consider a, > 0. 

a, > 0, no separation 
The leading terms of the asymptotic expansions as x -+ 0 + are the same as in the 
incompressible case, and are achieved by a generalization of the Rott & Hakkinen 
(1965) wake solution, as shown by Brown & Stewartson. Further terms follow 
in a similar manner to the symmetric case (I). 

In  the inner region, where 7 = y/xB = O(l) ,  as x -+ 0 + 
? m l Y )  = x*fo(v) s ~ ~ o g ~ f , o ( v )  +xf,(r) +O(x%gx)2). (5.4) 

Here 
u = a+/ay and v = - a$/ax. The pressure expansion begins 

is the stream function derived from (2.14) and satisfies $ ( O ,  0) = 0, 

p ( x )  = p( 0 )  +p,,x* -tp,o x log x + p2 x + O(xQ(l0g x)Z). (5.5) 

In  the outer regions y < 0 andy > 0, where y = O(l) ,  as x+ O +  

11.(x,y) = $o(Y) + ( ~ ~ p l + x l o g ~ P , o )  uo(9)Ji*+x$2(Y) Y [uo(Y1)l2 +o(x*(logx)2). 

(5.6) 

and i = f- 00 (y 0). The functions fo,flo and f, and the constants p,, p,, and pz 
satisfy the same equations as in the symmetric case, but now extended to the 
range -a < 7 < 00 and with the boundary conditions modified accordingly. 
The leading terms satisfy 

.f: +#fofo" - &ffc = &I, f;- a,r -+ 0 (7 -+ a), f;- bl7 -+ 0 (r -+-a), 
(5.5) 

solutions for which are given by Brown & Stewartson (1970) for a range of the 
positive parameter - a,/b,. 

a, = 0, separation at the trailing edge 

The above theory applies until separation just occurs above the plate a t  the 
trailing edge, in which case a, = 0. According to the computations, this is when 
a = as = 2-050 and the velocity profile a t  x = 0 - has the properties 

a, = 0, a2 = &dpr(O-)/dx = 0.133, b,  = 7 ( 0 - , 0 - )  = -5-473. (5.9) 

We find that in this case the three-layer structure which holds for a, > 0 has to be 
modified by the insertion of a fourth layer in y > 0,  where y = O ( x f ) ,  and in each 
layer the expansions proceed in powers of x% until the intervention of logarithmic 
terms. The reason for this format might at first sight seem somewhat arbitrary, 
but the necessity for a fourth layer becomes immediately obvious if we attempt 
an expansion of the type used for a, > 0;  suppose that we assume the leading 
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terms to be of the same form as those given by (5.4)-(5.6). Since a, = 0 we shall 
have J@; --f 0 as 7 + 03, and (5.8) is thus only compatible if p ,  = 0. Also, since 
b, c 0,  the solution of (5.8) has fo --f C, > 0 (y + a), where C, is a constant (see, 
for example, Stewartson & Williams 1973), and this contributes a term Cox* to 
$ as 7 -+ 03. However, since pl = 0, the equation for the  second-order term 
xf$,(y) in the outer region (y > 0) becomes 

(5.10) 

with solution = B$;, where B is a constant. From (2.16) we see that $: -+ 1 
as y -+ 00, so that in order for +E;(y) to satisfy the required boundary condition we 
must have B = 0. But this implies C, = 0, which is a contradiction. 

The reason why the asymptotic structure which holds for a, > 0 cannot be 
carried over to the case a1 = 0 is the existence of a small region of slowly moving 
fluid just downstream of the trailing edge with 0 < y < 1. This region, which, as 
we shall see, consists of a small bubble of reversed flow, occurs as a result of the 
adverse pressure gradient above the plate. Whilst the fluid immediately down- 
stream of the trailing edge on y = 0 responds to the change in boundary condition 
by immediately accelerating to  a positive velocity, the transmission of the effect 
of the change in boundary condition to the fluid in the overlying region is not 
fast enough to prevent the decelerating flow above the plate from attaining a 
negative velocity just downstream of the trailing edge for 0 < y < 1.  In  this 
slowly moving region of reversed flow viscous effects are relatively unimportant 
and the inertia terms must be balanced by the pressure gradient, which is 
consequently weaker (O(x-Q)) than in the case of no separation, where it was 
O(x-t) .  It is viscous effects, however, which dominate the flow which spans the 
region y = 0-  to y = O +  just behind the trailing edge, for here the shear aulay 
must be increased from b, ( < 0) a t  y = 0 - to zero a t  y = 0 + . The combined 
effect of this shear layer and the shear flow above the plate where y = O(1) 
(which satisfies au/ay + 1 as y + co) accelerates the stagnant fluid in the small 
reversed-flow bubble in between. 

The problem now is to provide a precise analytical representation of the physi- 
cal situation described in the previous paragraph, and we find that the structure 
of the solution as x --f 0 + consists in part of an inner layer surrounding the x axis 
where y = O ( l ) ,  which is governed by third-order ordinary differential equa- 
tions and which corresponds to the region of high shear behind the trailing edge. 
This extends upwards into a transitional layer, which corresponds to the region 
of slowly moving fluid, where 8 = y/& = O(1) and the governing equations are 
second order. This region itself extends upwards into an outer layer where 
y = O(1) and the governing equations are first order. The inner layer extends 
downwards into a similar outer layer in y < 0. 

We consider first the outer layers in y < 0 and y > 0, where, as in the case 
a, > 0, successive terms are forced by the pressure expansion, which begins 

p(x )  =p(O)+GP,+ ... (z+O+). (5.11) 

Here the appearance of terms of order xi or xz might be expected, but these 
may formally be shown to be zero to obtain a consistent solution in the inner 
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regions. The unknown constant Pl forces the leading-order perturbation cD,(y) 
of the basic solution @,(y) in the outer layers so that in both these regions the 
stream function has the form 

$(x, y) = @,(y) + xE@,(y) + . -. (z + 0 + ), (5.12) 

where @aY) = %,(Y) ry -Y+A,(O) (Y -+ -a), 
@;(y)-y-A,(O) (y-+co) and @6@D;-@:@,=-Pl. 

The boundary conditions (2.16) and (2.17) require that 0; -+ 0 (IyI + a), so that 
the appropriate solution is 

@,(?I) = P , U , ( Y ) / ;  -, (5.13) 

and as y + 0- we have 

$(x, y) - [4bly2 + &yS + . . .] + G[P,/b, + . . .] + . . ., (5.14) 

while as y + 0 + 
$(x,y) - [4a2y3+ ...I+ &[P,/Sa,y+ ...I+... . (5.15) 

In  the inner region, where 7 = y/x* = O(l) ,  we write the stream function to 
leading order as 

$(x,y) =xQ,(q)+ ... (x+O+), (5.16) 

as in the case a, =- 0. Here the inertia terms are balanced by the viscous term and 
F, satisfies the equation 

3; + $FOP; - *Pi2 = 0. (5.17) 

The boundary conditions on Po as q + - co follow from the match with the outer 
solution in y < 0 and we rewrite (5.14) in terms of x and 7 to obtain 

$(x, y) = x"(gb,p) + O(xt )  (x -+ 0 + ), (5.18) 

so that Po must satisfy the two conditions 

Po-+b,?j2-+0 (7-+ -00). (5.19) 

The third boundary condition needed to complete the solution of (5.17) must 
come from a condition on Po as ?j + co. However, if we rearrange the expression 
(5.15) in terms of x and q we see that there is no term O(xQ) in the resulting ex- 
pansion, which would imply that F, -+ 0 as q -+ 00. However, (5.17), with bound- 
ary conditions (5.19), has no such solution. 

Because of the impossibility of a match between the inner and outer layers in 
y > 0 we postulate the existence of a transitional layer between the two in which 
the similarity variable is 6 = y/&. If we rewrite (5.15) in terms of x and 6 we 
have 

$(z,y) = x ~ ( ~ a , B 3 + ( P 1 / 3 a 2 6 ) + . . . ) + 0 ( ~ )  (x+ o+) ,  (5.20) 

so that in the transitional region we write the stream function to leading order 
as 

$(x,Y) = &C,(B)+ ... (x-+ O + ) .  (5.21) 

Here then the streamwise velocity u is O(&) and the fluid is thus slow-moving in 
comparison with the viscous flow in the inner region, where u = O(x)),  and 
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with the outer flow above. The inertia terms are balanced by the pressure 
gradient and we have 

(5.22) 

where, from (5.20), Go must satisfy 

c0 3a2e3+ (p1/3a2e) (8 +m). (5.23) 
At 8 = 0 we have 

G 0 ( q  = c1 + c2 8 + [(cZ + 2 P,)/~c,I 8 2  + . . . , (5.24) 

where c1 and c2 are arbitrary constants (cl =i= 0),  and if we rewrite (5.21) in terms 
of x and 7 as 8 .+ 0 we find that we require 

$(x, Y) ~ % + O ( 4  (5.25) 

as 7 -+ 00. Thus the appropriate boundary condition on Fo as 7 -f co is in fact 

Fh+O (7'0O), (5.26) 

and the solution of (5.17) determines c1 as c1 = C,, where Co is the constant men- 
tioned earlier. The leading-order equation (5.22) in the transitional region may 
then be solved for Go and Pl subject to the three conditions Go(0) = c1 (from (5.24)) 
and Go w &,03+0 x O2 ( O - t c o )  (from (5.23)); knowledge of the constant Pl 
completes the leading-order solutions (5.13) in the outer regions. 

Further terms in the expansions of p and 9 in each region follow in powers 
of x+ until logarithms occur for a similar reason to that causing logarithms to 
arise in the case a, > 0,  a full explanation of which is given in I for the case 
a = 0. The formal expansions as x -t O +  are 

(5.27) 

5 

n=l 
with $ = @.,($I) + c. @,(y) x31"+') + log x + O(xY) (5.28) 

. -  

in the outer regions, 
4 

n=O 
$ = X $ ( ~ + @ F ~ ( Y )  + F 5 , ( ~ ) & l 0 g ~ + O ( x ~ )  (5.29) 

in the inner region and 
4 

n=O 
9 = 2 ~ + ( ~ f ~ ) G , ( 8 )  + G,,(8) &lOgx+ O(&) (5.30) 

in the transitional region. 
The equations for Fn and G, (n = 0,1, ...) must be solved alternately; at  

each stage the solution Fn produces the appropriate condition at  8 = 0 to obtain 
the solution for G, and Pn+l and hence complete the solution in each region. 
The solution G, in turn determines the boundary condition at 7 = co for the solu- 
tion for 2in+l and so on. The first four equations in the inner and transitional 
regions were solved numerically using a program kindly loaned by l\llr P.G.  
Williams; Fo, Go and Pl were first found in the manner already described and the 
constant c2 is thus determined as c2 = Gh(0). The function Fl is then found as the 
solution of the equation 

Ff -I- %FoF; -zFkF; +gFt Fl = 0, (5.31) 
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5 P, P A  

0.0 - 1.02560 - 1.02560 
0.000008 - 1.02558 - 1.02558 
0*000064 - 1.02545 - 1.02546 
0*000216 - 1.02511 - 1.02516 
0.000512 - 1.02450 - 1.02463 
0.001 - 1.02355 - 1.02377 

TABLE 3 

subject to the boundary conditions 

F; -+ C, (r -+ CO), Fl o x 75 + o x 7 + 0(eb*1q3/74) (7 -+ - 00). (5.32) 

Here the condition as r] -+ 00 follows from the match with the inner limit (5.24) 
in the transitional region, whilst the two conditions as 7 -+ - 00 follow from (5.18). 
The equation for GI is 

(5.33) 

and the boundary conditions provided by the match with the inner region as 
B + 0 and with the outer layer as 8 -t 00 are 

Gl(0) = c3 = lim {Fl(7) - c27}, (5.34) 

The unknown parameter P2 is thus determined and completes the solution for CD, 
in the outer layers, which is the same as the solution for @2 given by the expres- 
sion (5.7) with p2 replaced by Pz. 

The numerical results were 

Gl(/3) N 0 x 8%+ 0 x 82 (0 -+ 00). 
7-m 

PI = 0.599, P, = 0.521, (5.35) 

C 1  = 2.206, ~2 = - 1.426, CS = 1.829, (5.36) 

U(X,  0) - 1.893~~-0.211x$+O(x6) .  (5.37) 

with the following velocity profile at y = 0:  

In the matching zone (7 = co, 8 = 0 )  the reversed-flow region is in evidence and 
we have 

W(X, y) - 1-426& - 1.452~3 + O(X*). (5.38) 

As 8 + 00 the profile becomes positive again and we have 

U ( X , Y )  N (0*133y2+ ...)+ O(&). (5.39) 

This behaviour is demonstrated by the computed profile at z = 0-008 which is 
shown in figure 3, and clearly indicates a small region of reversed flow. This was 
apparently not large enough to cause the failure of the downstream marching 
procedure and since the computed solution remained stable it was found unneces- 
sary to incorporate the transitional layer in the numerical scheme. With only 
the first two terms in the asymptotic expansions a quantitative comparison with 
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Y 

FIGURE 3. Velocity profiles downstream of the trailing edge in the case a = 2.0502. 

the computed solution is only possible for very small values of 2, and table 3 
shows a comparison between the computed pressure pc and the asymptotic 
pressure p A ,  calculated from (5.27) using the numerical values (5 .35) .  

6. Asymptotic structure for large x 
We first consider the fundamental solution for which p + 0 as x 3 00. The 

external inviscid flow leaves the trailing edge of the plate parallel to the main- 
stream, i.e. at  an angle a* to the plate. This must match with the wake forma- 
tion downstream of the trailing edge in the lower deck and the streamline $ = 0 
is given by y - ax as x -+ 00. In  fact we can eliminate a from the boundary con- 
ditions (2.16) and (2.17) by applying a transformation of the type used by 
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Brown & Stewartson (1970) in the incompressible case, which in the supersonic 

y = y-ax, v = 21-au. (6.1) 
situation is simply 

The resulting equations and boundary conditions in the wake, in terms of the 
variables x, ?j, u, V and p ,  are then similar to those which occur in the symmetric 
problem cc = 0. However, in contrast to that case, here the upstream profiles (at 
x = 0, say) are not symmetric about jj = 0 and the conditions (2.16) and (2.17), 
which become 

(6.2) 

may not be replaced in part by the symmetry condition V = au/@ = 0 at 3 = 0. 
Asymmetries thus occur in the expansions for large x, and take the form of arbi- 
trary shifts in the origin of 7, which is defined as the similarity variable jj/x*. 

We expect the expansions which satisfy condition (2.20) to be of the form 

p(x )  N p o p  + FJx+ + . . . (x -+ a), (6.3) 

with +@, y) N X*fO(?j) +x&&(?j) +x-+f.(?;i) + ... (x -f a). (6.4) 

The leading terms satisfy 

f ~ + ~ f o f ~ - ~ f i a = O ,  f 4 ~ - - 3 3 %  (7+00), f i - - ? j - 3 j j o  (q-f-00). (6.5) 

Here we effectively have three boundary conditions, and an origin shift in 5 is not 
possible. The solution is thus determined uniquely, the last condition may be 
replaced byfo(0) =f:(O) = 0 and we see that +(x,ax) = 0 to leading order as 
x + 00. The numerical solution of (6.5) by Stewartson (1969) in connexion with 
the symmetric flat plate gives 

Po = -0.297, fA(0) = 1.611, (6.6) 

and provides an asymptotic extension to the computed solutions in figure 1. 
The first eigenfunction $1 is induced by the asymmetric part of the boundary 

condition (6.2) and satisfies 

f; + -Ql-S(A,(O)--A,(O))-B(A,(O) +A,(O))sgni;l (I4 -+a), (6-7) 

where C, is the constant in the expansion of 

j:p(t)dt  as x -+ oo; 

iff.(q) is any solution which satisfies the two boundary conditions (6.7) then other 
possible solutions are of the formfl(?j + co), where co is an arbitrary constant. The 
second eigenfunction f. occurs in the symmetric problem and satisfies J’z + @, 
as ?I -+ & 00. Here possible solutions are 

where ?jo = f +coo and coo is an arbitrary constant. jil remains arbitrary, as in the 
symmetric case, and corresponds to an origin shift in x, whilst coo corresponds to 
an origin shift in ?j and represents a possible asymmetry in the &j direction. 



656 P. G. Daniels 

Finally we mention the compressive and expansive solutions, in which p does 
not tend to zero as x -+ co. The asymptotic behaviour of these solutions has been 
fully analysed for the symmetric case and is given in I. For a $: 0 we make the 
transformation (6.1) and find that, just as for the fundamental solution, the 
expansions proceed in the same manner as given in I, but in terms of the variables 
z, 3, u, ;ij and p ,  and with asymmetries which occur in the form of origin shifts 
in 3. The compressive solutions are the most interesting physically. The pressure 
approaches a constant positive plateau value as I(: -+ 00 and the boundary layers 
leaving the trailing edge separate to enclose a region of completely inviscid re- 
versed flow behind the plate, which to leading order is bisected by the line 
y = ax. This may be caused by a small impediment in the flow downstream of the 
plate. The expansive solutions end with the pressure tending to - co, and repre- 
sent a flow which accelerates to a sink-type singularity on the line y = ax at a 
finite value of x, xl, say. As shown in I, in this case we have 

p ( x )  N - 2/(x,-x)2 as x + xl-. (6.9) 

The author gratefully acknowledges help and encouragement from Dr S.N. 
Brown, Professor K. Stewartson and Mr P. G. Williams, and the financial support 
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